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Abstract

The projection of dip data onto a section plane can be a source of errors in the relative and absolute position of data depending on the

choice of projection vectors. To properly transfer data in conical folds onto a plane of section, a best-fitting cone must be defined for the fold.

Dip data must be projected along the best-fit cone generatrices, which are defined individually for each dip measurement according to its

orientation. For individual dip measurements on bedding in a conical fold, their corresponding generatrix can be defined as the line of

tangency between bedding and the conical fold. Dip measurements on bedding not fitting an ideal conical geometry must be corrected before

a valid generatrix can be calculated. Graphical procedures to obtain generatrices for individual dip data are discussed, and a new analytical

method is proposed to calculate generatrices for dip measurements on bedding not fitting an ideal conical geometry. The maximum

projection distance within conical folds is discussed, and a way to estimate the natural extent of conical folds is defined. The proposed

methods are illustrated with data from a conical syncline in NE Spain.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The construction of a cross-section requires the projec-

tion of the maximum amount of available data onto the

plane of section in order to reduce uncertainties in the

structural interpretation. However, the projection of data

from elsewhere in the map, as well as from subsurface, onto

the section plane is not trivial and is usually the main source

of error during section construction. Any of the appropriate

projection methods requires a first interpretation of the

structure in order to extrapolate the geometry of the folded

surfaces towards the plane of section or to define the

orientation of the projection vector (DePaor, 1988;

Groshong, 1999). This first interpretative step is performed

to reduce the impact of local irregularities in the structure

that are not relevant at the working scale, and to find the

simplest geometry to transfer data onto the plane of section.

The selected geometry will be the basis for defining the

orientation of a projection vector of regional significance

and constraints on the maximum projection distance.

Projection of data in folds must be done along the fold

generatrix, the line whose motion through space defines a

surface (e.g. Wilson, 1967; Bengston, 1980; Groshong,

1999). For a cylindrical fold a single generatrix can be

defined, whose motion parallel to itself generates the folded

surface (Ramsay, 1967). Therefore, in the case of

cylindrical or subcylindrical folds, the projection vector to

use is the fold axis (which is the same as the generatrix). For

cylindrical and subcylindrical folds that do not fit an ideal

cylindrical structure, a best-fit cylinder can be defined, and

its fold axis can be used to project individual dip

measurements onto a section plane. In this way, data

projected onto the section plane preserve their relative

position inside the general structure. The use of different

vectors according to local features would lead to errors in

the relative position of data on the section plane.

Non-cylindrical folds require a different approach. A

possibility for some non-cylindrical folds is to subdivide

them into smaller segments of cylindrical geometry

(Langenberg et al., 1987). However, such an approach is

not practical for non-cylindrical folds with conical geome-

try. Conical folds are folds whose geometry fits a portion of

a cone. Conical folding is a common feature in the along-

strike termination of folds and in regions of dome and basin

interference folding (Stauffer, 1964; Ramsay, 1967; Wilson,

1967; Webb and Lawrence, 1986; Nicol, 1993). A conical

geometry is defined by the rotation of a generatrix around a
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fixed point (the cone apex), and thus its generatrix has

varying orientations. The projection vector for individual

dip measurements in a conical fold can be defined as the

generatrix corresponding to that measurement. DePaor

(1988) proposed an analytical method to individually

determine the orientation of the generatrix corresponding

to each dip measurement. This method takes into account

the geometrical relations between the orientation of a

conical surface at a certain point, the generatrix correspond-

ing to this orientation, and the cone’s axis. However, this

method only yields good results when the folded surfaces

perfectly fit a conical geometry. In natural examples, dip

measurements can deviate from ideal conical geometries

due to the presence of local irregularities or the error

associated with field measurements. When the method

proposed by DePaor (1988) is applied to data deviating from

the ideal conical geometry, the generatrices derived for

deviated data do not lie on the average cone defined by the

structure, and lead to the erroneous projection of dip data.

Another consideration that arises when working with

conical folds is the extension of such structures. Unlike ideal

cylindrical folds, conical folds cannot extend indefinitely

along the cone axis but must die out laterally (Wilson, 1967;

Groshong, 1999). If a conical fold were to continue beyond

its apex, a synclinal fold would become anticlinal, and vice

versa. It is therefore fundamental to establish a maximum

distance of projection for data, so as not to project it beyond

the cone apex.

The objective of this paper is to define a projection

procedure for conical folds, both in the aspects of

projection-vector determination, and in the definition of

the maximum distance of projection. A new method to

calculate individual generatrices for dip data is proposed.

This method uses an approach similar to that used in the

projection of cylindrical structures. By fitting individual dip

data onto the mean conical structure, it reduces errors in

projection derived from irregularities in the structure and

data-collecting errors. Theoretical and practical consider-

ations are made on the extension and limits of conical folds,

and a method for determining maximum projection distance

is proposed.

2. Conical folds

Conical folds are folds whose geometry corresponds to

the shape of a portion of a cone. Such folds are defined by

the rotation of a generatrix fixed at an apex around an axis at

a given semi-apical angle (Stauffer, 1964; Ramsay, 1967;

Wilson, 1967; Stockmal and Spang, 1982; Groshong, 1999).

For an ideal conical fold, a mean cone can be defined such

that bedding at each point is tangent to the mean cone at that

point. Bedding planes in an ideal conical fold contain a

generatrix of the cone, and are perpendicular to a plane

containing the cone axis and the generatrix (plane R;

Fig. 1a).

When working with natural examples of conical folds,

the first step is to determine the best-fit cone geometry. The

best-fit cone geometry is defined by the cone axis, a, and the

semi-apical angle, l (Fig. 1a), and can be derived from a

given set of dip measurements (Cruden and Charlesworth,

1972; Stockmal and Spang, 1982; Groshong, 1999). The

best-fit cone defined for multilayer conical folds is valid for

all layers in the fold, as the cone axis and semi-apical angle

are the same for all layers. In a multilayer fold, each layer

has its own apex, and the locus of all apices define the

position and orientation of the cone axis.

In natural folds, however, not all data will fit a perfect

cone geometry. Therefore, statistical analysis is the best tool

to decide whether all data can be considered to form part of

the same fold (Cruden and Charlesworth, 1972; Stockmal

and Spang, 1982). Some folds may present a varying conical

Fig. 1. (a) Graphical representation of a conical fold. The geometrical

elements which define a conical fold are the generatrix (g), cone axis (a),

and semi-apical angle (l). The possible bedding orientations in such a

structure are those corresponding to the planes that are tangent to the cone.

All bedding planes contain the generatrix at the point of tangency, and their

pole ( p) is perpendicular to the generatrix. Vectors g, a and p lie on a single

plane (plane R). (b) Graphical representation of the geometrical elements in

the analytical method by DePaor (1988) and the method we propose. A

bedding plane lying off the best-fit cone is depicted. The first cross-product

for both methods yields vector r (pole to plane R). In the method by DePaor

(1988) the solution (vector p £ a £ p, the bold dotted line) is achieved

through a second cross-product. This vector lies off the cone. In our method,

on the other hand, vector r is used to obtain vector s (a vector lying on plane

R and perpendicular to the cone axis). Vector s is scaled and then added to

the cone axis to obtain the intersections of plane R and the best-fit cone (g1

and g2). Of these two vectors the one forming the smallest angle with

bedding is chosen as the best-fit generatrix.
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geometry along the fold axis, in which case the fold should

be broken down into domains in which geometry is that of a

single cone.

3. Projection of data in conical folds

Projection of data in a conical fold onto a section plane

should be done along the direction of the generatrix

(Bengston, 1980; DePaor, 1988; Groshong, 1999). Once a

maximum projection distance has been established (see

Section 5), the projection of data in a conical fold onto a

section plane is reduced to the problem of determining the

generatrix corresponding to each dip measurement.

For data in an ideal conical fold (a fold perfectly fitting

the best-fit cone), the generatrix (g) at each point will be the

line of intersection of the bedding plane at that point, and a

plane perpendicular to bedding containing the best-fit cone

axis (plane R). The orientation of this line can be obtained

graphically with the use of a stereoplot, as is shown in Fig.

2. Bengston (1980) and Groshong (1999) propose a similar

graphical solution using tangent plots.

DePaor (1988) proposes an analytical solution for this

method. It consists of finding the generatrix through a

double cross-product of a vector parallel to the bedding pole

( p) and a vector parallel to the cone axis (a):

g ¼ p £ a £ p ð1Þ

where g is a vector parallel to the generatrix. The vectors

involved in this process are depicted in Fig. 1b.

4. Determining projection vectors and errors for data in

conical folds

Whenever a bedding plane does not lie on the best-fit

cone, the vector obtained with any of the previous methods

will not be a generatrix of the best-fit cone (i.e. the angle

between the calculated vector and the cone axis will be

different from the semi-apical angle). An example of the

result of these operations for a plane not lying on the best-fit

cone is shown in Figs. 1b and 2.

To avoid this problem one must follow a process similar

to that used for cylindrical folds. In a cylindrical fold, the

projection vector used for all data is the generatrix for the

best-fit cylinder, even though individual data do not lie on

this best-fit cylinder. Similarly, for data in a conical fold, the

generatrix to be used should be a generatrix of the best-fit

cone. For individual dip measurements the best-fit cone

generatrix forming the smallest angle to the measurement

should be used (DePaor, 1988).

To find the best-fit generatrix for any bedding measure-

ment, the process to be followed is (Fig. 1b):

1. Generate plane R containing both the best-fit cone axis

(a) and the pole to bedding ( p);

2. Find the two lines of intersection (g1 and g2) of plane R

with the best-fit cone. Lines g1 and g2 will be generatrices

of the best-fit cone;

3. Of lines g1 and g2, the one to be used as projection vector

will be that which forms the smallest angle with the

original bedding.

These operations can be performed either graphically or

analytically. A graphical description using a stereoplot is

shown in Fig. 2.

To obtain an analytical solution, the first step is the cross

product of vectors a (cone axis) and p (pole to bedding),

yielding vector r (Fig. 1b):

r ¼ a £ p ð2Þ

Vector r is the pole to plane R, which contains the cone axis

and pole to bedding. The next step consists of finding a

vector (vector s) perpendicular to the cone axis (a) on plane

R:

s ¼ r £ a ð3Þ

There are now two perpendicular vectors on plane R

(vectors a and s). Vector s is scaled so that its length with

respect to vector a is equal to the tangent of the semi-apical

Fig. 2. Example of the determination of the generatrix for a plane in a

conical fold. The bold lines are the locus of the bedding plane poles in a

conical fold with axis 20/030 (solid triangle), and semi-apical angle

l ¼ 208. The dotted circle corresponds to the locus of the cone’s

generatrices (i.e. the best-fit cone). For a bedding plane A lying on the

best-fit cone (bedding A dipping 285/70, dash-dot line), a plane R (dashed

line) containing its pole (pole A: 20/105, solid circle) and the cone axis

(20/030) is constructed. The intersection of plane R and bedding plane A

yields the appropriate generatrix (generatrix A: 14/010, solid square). For a

bedding plane B not lying on the best-fit cone (bedding B dipping 285/70,

dash-cross line), the same procedure would yield incorrect generatrix B

(17/019, empty square) lying at 118 from the cone axis, not 208. The correct

approach consists of intersecting plane R with the best-fit cone to find the

bedding plane on the cone forming the smallest possible angle with plane B:

plane A in this case. Plane R is then intersected with the best-fit bedding

plane defined (plane A) to obtain the correct generatrix.
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angle (l):

sfx ¼ sxtanlða2
x þ a2

y þ a2
z Þ

1=2ðs2
x þ s2

y þ s2
z Þ

21=2 ð4:1Þ

sfy ¼ sytanlða2
x þ a2

y þ a2
z Þ

1=2ðs2
x þ s2

y þ s2
z Þ

21=2 ð4:2Þ

sfz ¼ sztanlða2
x þ a2

y þ a2
z Þ

1=2ðs2
x þ s2

y þ s2
z Þ

21=2 ð4:3Þ

Where ax, ay, az, sx, sy, and sz are the x, y and z components

of vectors a and s; and sfx, sfy, and sfz are the x, y and z

components of the scaled vector s (sf). If vectors a and s are

of unitary length, these equations simplify to:

sfx ¼ sxtanl ð5:1Þ

sfy ¼ sytanl ð5:2Þ

sfz ¼ sztanl ð5:3Þ

To obtain the two possible generatrices (g1 and g2),

vector sf is added to and subtracted from the cone axis:

g1 ¼ a þ sf ð6:1Þ

g2 ¼ a 2 sf ð6:2Þ

The projection vector is the generatrix that forms the

smallest angle with bedding, i.e. it lies at an angle nearest to

908 with respect to the bedding pole ( p). The angle between

each of the generatrices and vector p can be calculated using

the dot product:

g†p ¼ gxpx þ gypy þ gzpz

¼ ðg2
x þ g2

y þ g2
z Þ

1=2ðp2
x þ p2

y þ p2
z Þ

1=2cosv ð7Þ

and if the length of vectors p, g1 and g2 have been converted

to unitary length, Eq. (7) reduces to:

cosv ¼ gxpx þ gypy þ gzpz ð8Þ

The error in the projected position for data introduced by

using other projection methods instead of the proposed

method is proportional to the distance of data from the

section plane, and roughly proportional to the angle between

the alternative projection vectors. If the section plane is

vertical or nearly vertical, and the angle between the

alternative projection vectors is small (under 158), the

magnitude of the error (e) can be estimated by multiplying

the angle (in radians) between the alternative projection

vectors (b) and the distance from the data to the section

plane along the projection vector direction (l; Eq. (9)):

e ¼ bl ð9Þ

However, due to the fact that angle b and distance l will

vary for individual dip measurements, and errors will vary

accordingly, it is hard to interpret the meaning of individual

errors. A possible solution is to calculate errors using only

data lying farthest from the section plane to obtain an

estimate of the maximum error. Alternatively, an estimate

of the error can be obtained by projecting a sample of data

using the proposed projection method and alternative

methods onto the section plane, and analyzing the

differences in the projected position of data numerically or

visually.

Fig. 3. Example of multilayer conical structure. Each layer has its own apex, with a common cone axis for all layers. On plane K, perpendicular to the regional

bedding, and containing the fold axis, a termination line can be defined separating the conically folded domain from the unfolded domain. This line represents a

maximum distance of projection for data in the folded domain. The area affected by conical folding is shaded. A section plane is represented which is

intersected by the termination line at a certain stratigraphical position. In this case, the bedding stratigraphically above this position will not be affected by

folding on the section plane. Therefore only data from lower stratigraphical levels can be projected onto the section plane from within the folded domain.

O. Fernández et al. / Journal of Structural Geology 25 (2003) 1875–18821878



5. Projection distance in conical folds

Once a vector of projection has been determined, a

maximum distance for the projection of the data must be

established. Conical folds do not extend indefinitely, but

have a termination in the direction of convergence of its

generatrices (Wilson, 1967; Groshong, 1999). The maxi-

mum distance of extension in this direction is its apex. For a

multilayer conical structure, each layer has its own apex,

and therefore its own limit (Fig. 3).

Another limitation to the along-strike extension of

conical folds is imposed by the preservation of bedding

thickness and continuity of bedding. For a fold terminating

into a non-folded region, the intersection between the

conically folded layers and non-folded layers resolves into a

single line (the fold termination line; Fig. 3). The

termination line can be used as a limit beyond which data

within the conically folded domain cannot be projected as

the conical fold terminates.

The termination line lies on a plane (plane K) containing

both the best-fit cone axis and the pole to regional bedding,

and bisects the angle between folded bedding and regional

bedding on this plane (so as to preserve bedding thickness).

The operations to obtain the absolute position and

orientation of the termination line can be easily visualized

on a plane perpendicular to regional bedding and containing

the cone axis (plane K; Figs. 3 and 4):

1. The absolute position of the cone axis is derived from the

intersection of two planes containing the cone axis and

bedding poles for any two bedding planes (plane R as

obtained with Eq. (2) in Section 4, and placed in 3D

space to pass through the position of the bedding plane

measurements);

2. For a certain horizon (A, for instance), the position of its

apex can be obtained from the intersection of the cone

axis and a bedding plane on horizon A. On plane K this

position is obtained by extending horizon A to its

intersection with the cone axis (Fig. 4a);

3. There exists a bedding plane in the unfolded domain

which would contain the apex for horizon A if it were

extended (horizon B; Fig. 4a);

4. For a known stratigraphical separation between horizons

B and A (distance h), the position of horizon A can be

deduced in the unfolded domain and extended to its

intersection with horizon A in the folded domain (Fig.

4b). The distance (d) from the apex of horizon A to this

intersection can be defined as a function of h, a (angle

between regional bedding and cone axis on plane K), and

l (semi-apical angle), as:

d ¼ sinðaþ lÞ=h ð10Þ

the termination line is the bisector on plane K of bedding

in the folded and unfolded domains, placed at the

intersection of folded and unfolded bedding.

The value of d, and the absolute position of plane K and

of the apex for horizon A can be used to obtain the absolute

position of the termination line in 3D space.1 The

termination line will intersect the section plane at a certain

statigraphical horizon. Above or below this horizon bedding

on the section plane will not be affected by folding (Fig. 3).

Data in the folded domain can therefore be separated,

according to its stratigraphical position, as data to be

projected or not onto the section plane.

6. The Penyagalera syncline: an example

The Penyagalera syncline is a kilometric conical fold

affecting synorogenic Tertiary conglomeratic sediments

in the footwall of the frontal structure of the Catalan

Coastal Ranges, in NE Spain (Lawton et al., 1999;

Fig. 5). Structural analysis of 950 dip measurements of

Fig. 4. Determination of the absolute position of the termination line. The

illustration corresponds to a section along plane K (see Fig. 3). On plane K,

the angle between the cone axis and bedding in the folded domain is equal

to the semi-apical angle (l), whereas the angle between the cone axis and

unfolded bedding is a. (a) The absolute position of the apex for horizon A in

the folded domain is obtained by extending bed A to the intersection with

the cone axis. The horizon in the unfolded domain which contains the

projected position of this apex (horizon B) is determined. (b) Horizon A in

the unfolded domain is placed at a stratigraphical distance h from horizon

B. The termination line is the bisector of bedding in the folded and unfolded

domains, at distance d from the apex for horizon A.

1 To reduce the impact of local irregularities in the position of the

termination line, calculations to obtain plane K and the value of d should be

repeated with different dip measurements, and an average solution derived.
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the Tertiary conglomerates reveals a conical geometry, with

a fold axis plunging 10/050, and with a 108 semi-apical

angle (Fig. 5). However, due to the syntectonic character of

the conglomerates (Lawton et al., 1999), the cone axis for

each horizon has a different position in space (the fold is not

concentric). Thus, the position of the termination line

depends on the stratigraphic horizon used for reference. To

obtain a minimum estimate of the maximum projection

distance, the position of the apex for the stratigraphically

highest horizons was used. The position of the cone axis has

been calculated for data from one of the uppermost horizons

in the syncline (indicated by the bold arrow in Fig. 7c).

Intersection of bedding planes on this horizon with the cone

axis indicate that the position of the apex for this horizon

lies far beyond the limits of the studied area (Fig. 5).

Therefore, all data within the studied area can be used for

projection onto the section plane.

A NW–SE vertical cross-section (A–A0) was con-

structed, perpendicular to the trend of the fold (Fig. 5).

Six hundred and fifty dip data from the folded conglom-

eratic unit were projected in three different ways onto the

section plane. The first projection (Fig. 7a) was done using

one single projection vector (00/050), which was calculated

assuming the fold to be cylindrical. The second projection

Fig. 5. Map of the Penyagalera syncline and frontal thrust structures in the southwestern sector of the Catalan Coastal Range (Modified from Lawton et al.,

1999). Bold line (A–A0) indicates the position of the cross-section in Fig. 7. The dotted polygon indicates the limits of data projected onto the section in Fig. 7.

The dashed circle in the northeastern sector indicates the estimated position of the cone apex for one of the highest conglomerate horizons (the size indicates

uncertainty in the position). The dashed line (B–B0) shows the position of the reference cross-section (Fig. 6). Inset in the lower right corner is the stereoplot of

950 bedding poles from the Tertiary conglomerates and shales in the Penyagalera syncline. The calculated best-fit for the data is a small circle with axis

plunging 10/050, and a semi-apical angle of 108.
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(Fig. 7b) was done following the method proposed by

DePaor (1988), for a cone axis plunging 10/050, and 108

semi-apical angle. The third projection (Fig. 7c) was done

following the steps in Section 4 for the same cone geometry.

Comparison between the different results from the projec-

tion of data (Fig. 7), and with the geologic cross-section

across the Penyagalera syncline (Fig. 6) reveals that data

projected according to the proposed method (Fig. 7c) best fit

the observed structure and correctly preserve the fold

geometry.

7. Discussion

Projection of data in conical folds onto section plane

must take the conical geometry into account, and should be

done along the best-fit cone generatrices. The use of cone

generatrices for the projection of data in conical folds

permits the use of a larger data set than if the fold were

partitioned into cylindrical domains. The proposed method

improves existing projection methods for conical folds in

that it reduces the impact of local irregularities in the

Fig. 6. Geologic cross-section (B–B0) across the Penyagalera syncline and

frontal thrust structures of the Catalan Coastal Range. The box indicates the

projected position of section A–A0 (Fig. 7) on section B–B0. See Fig. 5 for

location. (Modified from Lawton et al., 1999.)

Fig. 7. Projection of 650 dip data from the Tertiary conglomerates and shales onto section A–A0 (Fig. 5). Projection has been done: (a) along a single vector

(00/050); (b) according to the method by DePaor (1988) with a cone axis at 10/050; and (c) using the method proposed in this article, with a cone axis at 10/050,

and semi-apical angle of 108. The numbers indicate the main differences between sections. The most relevant differences between the three methods is

indicated by numbers in the three sections. (1) indicates the position of three dip measurements (larger, black symbols) corresponding to a sandstone marker

layer at the bottom of the conglomeratic sequence. The only reasonable projection is that in section (c). (2) indicates the position of the fold interlimb. Both

sections (a) and (b) have data from both limbs overlapping in this zone, indicating incorrect projection. (3) corresponds to the eastern limb of the syncline where

data with varying dips overlap in sections (a) and (b), whereas data in section (c) are projected coherently. The large cross in section (c) indicates the position of

the cone axis calculated for one of the highest conglomerate horizons in the syncline (indicated by the arrow).
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projection of data. Furthermore, the analytical resolution

presented allows the automatization of the projection

process, which makes it possible to work with large

amounts of data.

The differences in the position of data on the section

plane derived from using different projection methods will

vary proportionally to the angle between the projection

vectors used, and the distance from the original data to the

section plane. For individual examples, data can be

projected onto the section plane using the analytical

methods mentioned in this article. A comparison of the

results will provide an estimate of the errors introduced by

using different approaches.

A correct constraining of projection distance is of great

importance. Erroneous positioning of the termination of a

conical fold can lead to projecting data into areas of

nonexistent folding. Determination of the position of the

termination line is meant as a guide, rather than a precise

method, as the reliability of the result will vary depending

on the degree of fit of the original data to a conical

geometry. However, the implementation of such consider-

ations is necessary to reduce the possibility of projecting

structures beyond their real extents, as could happen with

minor structures.

Acknowledgements

The authors wish to thank C. Kluth and A. Nicol for their

constructive and useful reviews of the article, and

C. Passchier for helpful comments on the final version of

the manuscript. We also wish to acknowledge support from

the Generalitat de Catalunya (Grup de Recerca de
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